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Abstract

The industrial production of aluminium is an electrolysis process where two
superposed horizontal liquid layers are subjected to a mainly vertical electric
current supplied by carbon electrodes. The lower layer consists of molten
aluminium and lies on the cathode. The upper layer is the electrolyte and
is covered by the anode. The interface between the two layers is often
perturbed, leading to oscillations, or waves, similar to the waves on the
surface of seas or lakes. The presence of electric currents and the resulting
magnetic �eld are responsible for electromagnetic (Lorentz) forces within
the uid, which can amplify these oscillations and have an adverse inuence
on the process.

The electrolytic bath vertical to horizontal aspect ratio is such, that it
is advantageous to use the shallow water equations to model the interface
motion. These are the depth-averaged Navier{Stokes equations, commonly
used in the modelling of oceans and rivers. Di�erent orders of approxi-
mations may be adopted in averaging the Navier{Stokes equations so that
nonlinear and dispersion terms may be taken into account. Although these
terms are essential to the prediction of wave dynamics, they are neglected in
most of the literature on interface instabilities in aluminium reduction cells
where only the linear theory is usually considered. The unknown variables
are the two horizontal components of the uid velocity, the height of the
interface and the electric potential.

In this application, a �nite volume resolution of the double-layer shal-

low water equations including the electromagnetic sources has been devel-

oped, for incorporation into a generic three-dimensional computational uid

dynamics code that also deals with heat transfer within the cell.
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1 Background in Shallow Water Theory

1.1 Surface Waves

The depth-averaged Navier{Stokes equations are known as the shal-
low water equations. These equations give an approximation for the
dynamics of long waves of length l and small amplitude a at the
surface a shallow layer of uid of depth h0. They express the con-
servation of mass and momentum and can be written in dimensional
form in terms of the gravity g, the depth-averaged velocity u and
displacement � of the surface height h = h0 + �. Their dimension-
less form is expressed in terms of the small parameters � = a=h0 and
� = h20=l

2;

�t +r � [(1 + ��)u] = 0; (1)

ut + �u � ru+r� � 1

3
�rr � ut = O(�2; ��); (2)

the subscript t denoting partial time derivatives. The velocity u is
scaled with ga=c0, c0 =

p
gh0 being the linear phase velocity, the

time t with l=c0, the horizontal coordinate with l and the vertical
displacement � with a. Neglecting the small terms in � and � gives
a linear theory of waves which has been used by almost all authors
of interface instabilities in aluminium reduction cells, e.g. Sneyd [1].
The theories of nonlinear waves is reviewed in several books including
Whitham [2] and Mei [3].

1.2 Two-layers Theory

Tomasson & Melville [4] have shown that the waves at the interface
between two layers of uids of similar densities can be represented
by the same Boussinesq equations. Using the notations chosen by
these authors, the top and bottom layers are respectively numbered
1 and 2 as shown on �gure 1. Their densities are �1, �2 and their
depths h1, h2. After introducing the equivalent single layer depth
h0 = h1 h2=(h1 + h2) and the square of the linear phase speed
c20 = gh0��=�0 where �� = �2 � �1 and �0 = (�1 + �2)=2 is a
reference density, and assuming a balance between the volume uxes
U1 = (h1� �)u1 and U2 = (h2+ �)u2 in the two layers, the single
ux U de�ned as U = U2 = �U1 satis�es the Boussinesq equa-
tions for the displacement � of the interface between the two uids.
Indeed, in dimensionless form and in terms of the small parameters
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Figure 1: The two-layers of uid in an electrolytic bath and the perturba-

tion �(x; y) of the interface.

� = a=h0 and � = h20=l
2, scaling h1 and h2 with h0, the densities �1

and �2 with �0, the velocity ux U with h2g0a=c0, the time t with
l=c0, the coordinates x and y with l and the vertical displacement �
with a,

�t +r �U = 0; (3)

Ut + �

�
1

h2
� 1

h1

�
[U � rU� (�U)t]

+r� � 1

3
�h1h2rr �Ut = O(�2; ��): (4)

2 Application to an Electrolytic Bath

An aluminium reduction cell is submitted to a strong electric current
density J crossing both layers of uid from the upper carbon anode
to the lower carbon cathode. A signi�cant magnetic �eld B mainly
created by the input and output currents provided through \bus bars"
to these two electrodes is also present. Any change in the position of
the interface between the two liquid gives rise to a perturbation j in
the current distribution as the electrical path in the electrolyte of poor
conductivity �1 is either decreased or increased as shown on �gure 2.
Let us de�ne �� as the electric potential drop across the electrolyte.
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Figure 2: Perturbation of the electric currents due to the deformation of the

interface between the molten aluminium and the electrolyte. The current

takes the shortest path through the poorly conducting electrolyte.

The vertical current density perpendicular to the interface is then
de�ned in this uid as

J? = ��1r?� = �1
��

h1 � �
� �1

��

h1

�
1 +

�

h1

�
= J0? + j? (5)

The contribution of the interface perturbation in the normal current
density J? is therefore

j? =
�1��

h21
� (6)

while the constant vertical current without deformation of the inter-
face is just J0? = �1��=h1. The conservation law for electric charges
may be written as

r � J = r � j = r? � j? +rk � jk = 0; (7)

and may be integrated over the depth of the molten aluminium layer
as Z interface

cathode
r � j dz = r �

Z interface

cathode
jk dz +

Z interface

cathode

@j?
@z

dz =

rk �hjki�
Z interface

cathode
dz+[j?]

interface
cathode = (h2 + �)rk �hjki+jinterface? = 0; (8)

where hjki = ��2rk� is the depth-averaged current density in the
molten aluminium and can be solved from the Poisson equation

r2
k�(x; y) = ��1

�2

��

h21h2
�(x; y): (9)
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Since the electromagnetic force gives some energy and momentum
to the uid, the modelled interface oscillations can only increase if the
dissipation due to the viscosity of the uid is not taken into account.
The linear friction law used by Bojarevics [5] is introduced in the
model.

2.1 Scaling

Let us introduce the small parameter � = (�2 � �1)=(�2 + �1) =
��=(2�0) and the aspect ratio  = l2y=l

2
x of the bath horizontal di-

mensions so that the x- and y-coordinates are now scaled with lx
and ly respectively. The time is scaled with lx=c0, the x- and y-
components U and V of the velocity ux thus being scaled with �c0h0
and �

p
c0h0. The linear friction law in ��U used by Bojarevics [5]

with a friction coe�cient � proportional to ���1Re�1 is used. De�n-
ing the interaction parameter N = (l3x�1��B0?)=(lyh

2
1�2c

2
0) char-

acterizing the ratio of electromagnetic to inertial forces and scaling
the electric potential � with (�1l

2
xa��)=(�2h

2
1h2) the dimensionless

Boussinesq equations are

�t + Ux + Vy = 0; (10)

�
1 + �

h1 � h2
h1 + h2

�
Ut+�

�
1

h2
� 1

h1

�
[(UU)x + (V U)y � �Ut]

+�x�1

3
�h1h2 (Uxxt + Vxyt) = �N�y��U+O(�2; ��; ��; ��); (11)



�
1 + �

h1 � h2
h1 + h2

�
Vt+�

�
1

h2
� 1

h1

�
[(UV )x + (V V )y � �Vt]

+�y � 1

3
�h1h2 (Uxyt + Vyyt) = N�x � �V +O(�2; ��; ��; ��);

(12)
the subscripts x and y denoting partial spatial derivatives.

3 Numerical method and Simulations

The �nite volume method with a fully staggered grid as shown on
�gure 3 is used. All terms are computed with second order central
�nite di�erences for both spatial and time derivatives. The mass con-
servation equation (10) and the momentum equation (12) are solved
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Figure 3: Finite volume mesh.

alternatively. The perturbation � of the interface is computed explic-
itly at the time step n from its value at the time step n� 1 and from
the momentum (U; V ) at the intermediate time step n� 1=2:

�ni;j = �n�1i;j +�t

0
@U

n�1=2
i+1=2;j � U

n�1=2
i�1=2;j

�x
+ 

V
n�1=2
i;j+1=2 � V

n�1=2
i;j�1=2

�y

1
A ; (13)

Then the electric potential can be solved from eq. (9) using a classical
�ve-point �nite di�erence scheme for the Laplacian of � and a four-
point averaged value of �i+1=2;j+1=2. The momentum U is computed
implicitly at the time step n + 1=2: The momentum U is computed
implicitly at the time step n+ 1=2:

U
n+1=2
i+1=2;j = U

n�1=2
i+1=2;j+�t

�
1 +

�
1

h2
� 1

h1

��
� � ��ni+1=2;j

���1
�
��

�
1

h2
� 1

h1

�h
(UU)xjni+1=2;j +  (V U)yjni+1=2;j

i

��ni+1;j � �ni;j
�x

+
1

3
�h1h2

�
Uxxtjni+1=2;j +  Vxytjni+1=2;j

�

�NBn
?i+1=2;j

�n
i+1=2;j+1=2 � �n

i+1=2;j�1=2

�y
� �Un

i+1=2;j

)
(14)

where the x-component (UU)x + (V U)y of the advection term is
discretised in conservative form using a control volume centred at
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Figure 4: Example of the position �(x; y) of the interface between the
molten aluminium and the electrolyte after ampli�cation of a small
sine wave by the electromagnetic forces within the uid.

i + 1=2; j and is averaged over the time steps n � 1=2 and n + 1=2,
while the dispersion terms Uxxt and Vxyt are computed with second
order central �nite di�erences over two and three points for �rst and
second order derivatives. The code is run with the parameters of
the aluminium production plant in Slatina, Romania. The bath is
6� 2 meters. The electrolyte and aluminium layers are 5 and 25 cm
respectively. The imposed magnetic �eld is given by a commercial
�nite elements software [6]. The maximum value of the vertical com-
ponent of the magnetic �eld is 10�2 T and the electric potential drop
in the electrolyte is 1.5 V.

4 Conclusion

The shallow layer equations discretised in �nite volumes are success-
fully applied to model interface perturbations in an aluminium elec-
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trolysis cell. This �nite volume formulation allows the integration of
this model with standard computational uid dynamics software for
heat transfer computations, a work which is in progress now.
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