
Title of Publication Edited by 
TMS (The Minerals, Metals & Materials Society), Year 

  

COMPARISON OF MHD MODELS FOR ALUMINIUM REDUCTION CELLS 
 

V.Bojarevics and K.Pericleous 
 University of Greenwich, CMS, 30 Park Row, SE10  9LS, London, UK 

 

Keywords: magnetohydrodynamics, waves, aluminium electrolysis, numerical modeling 

 

Abstract 

 

The self sustained waves at the aluminium-electrolyte interface, 

known as ‘MHD noise’, are observed in the most of commercial 

cells under certain conditions. The instructive analysis is 

presented how a step by step inclusion of different physical 

coupling factors is affecting the wave development in the 

electrolysis cells. The early theoretical models for wave 

development do not account for the current distribution at the 

cathode, instead assuming a uniform current density Jz at the 

bottom. When the electric current is computed according to the 

actual electrical circuit, the growth rate is significantly lower, and 

if a sufficient dissipation is included, does not lead to instability. 

The inclusion of the horizontal circulation-generated turbulence is 

essential in order to explain the small amplitude self-sustained 

oscillations. The horizontal circulation vortices create a pressure 

gradient contributing to the deformation of the interface. The full 

time dependent model couples the nonlinear fluid dynamics and 

the extended electromagnetic field that covers the whole bus bar 

circuit and the ferromagnetic effects. 

 

Introduction 
 

An electrolysis cell used to produce primary aluminium is 

sensitive to waves at the interface of liquid aluminium and 

electrolyte. It is recognised and exploited in mathematical 

modeling that the interface waves are similar to stratified sea 

layers dynamics [1]. However, for the case of electrolytic cells 

the penetrating electric current and the associated magnetic field 

are intricately involved in the oscillation process, which results in 

the observed wave frequencies being shifted from the purely 

hydrodynamic ones [2]. The interface stability problem is of great 

practical importance because the electrolytic aluminium 

production is a major electrical energy consumer, and it is related 

to environmental pollution rate. The first attempts of the stability 

analysis date back to [3,4] and a short summary of the main 

developments can be found in [2]. Important aspects of the 

multiple mode interaction have been introduced in [4]. Linear 

friction law for the wave motion and the horizontal circulation 

was first applied in [5] for the purpose of theoretical analysis, and 

it was widely used afterwards in theoretical studies. Actually, the 

linear friction is a simplification of the more general nonlinear 

bottom friction term appearing in the shallow water models, see 

for example [7]. The systematic perturbation expansion for the 

fluid dynamics and electric current problems, permitting 

reduction of the three-dimensional problem to the two-

dimensional shallow layer problem was developed in [8], and the 

wave oscillation frequency shift with the magnetic interaction 

from the pure hydrodynamic state was mathematically proven. 

The procedure of the “shallow water approximation” can be 

extended for the case of weakly non-linear and dispersive waves 

using the Boussinesq formulation for non-unidirectionally 

propagating waves at a two fluid layer interface in the  presence 

of side walls [1]. Attempts to extend the electrolytic cell wave 

models to the weakly nonlinear case have started  in [9] where 

the basic equations were derived, including the nonlinearity and 

linear dispersion terms. An alternative approach for the nonlinear 

numerical simulation for an electrolysis cell wave evolution is 

attempted in [10 and references there], by disregarding the 

dispersion terms and using the simple linear friction term. 

 

The present paper contains a generalisation of the previous non-

linear wave equations [9, 10] by accounting for the turbulent 

horizontal circulation flows in the two fluid layers and adding the 

nonlinear bottom friction law [7]. The inclusion of the turbulence 

model is essential in order to explain the small amplitude self-

sustained, non-damped oscillations of the liquid metal surface 

observed in real cells, known as ‘MHD noise’. The fluid dynamic 

model needs to be fully coupled to the time dependent, extended 

electromagnetic simulation which includes not only the fluid 

layers, but the whole bus bar circuit and the ferromagnetic effects 

[11].  

 

 
 

Figure 1. The electric current distribution in busbars for 500 kA 

cells in the potline. The test cell contains ferromagnetic shell. 

 

 

Mathematical model reducing the 3d problem to shallow 

layer non-linear wave model 

 

Aluminium reduction cells are arranged in a row of similar cells, 

where each cell is connected in series to the neighbours by a 

complex arrangement of current-carrying bus bars shown in 



Figure 1 for a case of 500 kA side by side cells in line. The 

electric current to the individual cell is supplied from above via 

massive anode bus bars made of solid aluminium, from which 

anode rods connect to the carbon anodes. The liquid electrolyte 

layer beneath the anode blocks is relatively poor electrical 

conductor of a small depth (4-6 cm) if compared to its horizontal 

extension (3-4 m in width and 10-20 m in length). The electrolyte 

density (ρ
2 = 2.1e3 kg/m3) is of little difference to the liquid 

aluminium (ρ
1 = 2.3e3 kg/m3) pool bottom layer of typical depth 

15–30 cm, created as the result of electrolytic reaction. The 

“shallow water” approximation assumes that the horizontal 

dimensions Lx  and Ly  are much larger than the typical depth H 

for each of the layers, and, in addition to this, the interface wave 

amplitude A is assumed to be small relative to the depth H. Thus 

the two small parameters of the problem are the nondimensional 

depth δ  = H/L  and the amplitude ε  = A/H.          

 

With the purpose to derive the Boussinesq equations for the wave 

motion we will need to estimate the terms in the full three-

dimensional Navier-Stokes equations which are 

nondimensionalised with appropriate coordinate stretching to 

reveal explicitly the small parameters. The horizontal coordinates 

are made nondimensional by the horizontal length scale L and, 

according to the small depth assumption, a stretched vertical 

coordinate is  

)/( δLzz = ,                                             (1) 

 

the nondimensional interface deformation of small amplitude are 

represented as 
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The nondimensional variables are introduced using the following 

typical scales: the width of cell L for the horizontal coordinates x 

and y; the typical gravitational wave velocity is scaled as 

gHu =0
, gHL /  for time t, 2

01uρ  for pressure p, IB L0
2/  

for the electromagnetic force f ( B0 is typical magnetic field 

magnitude and I – the total electric current), the relative density ρ = ρ
i /

ρ
1. 

With these definitions the nondimensional fluid flow equations 

(continuity, horizontal momentum and vertical momentum) are 

represented respectively as: 
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where the summation convention is assumed over the repeating 

indexes k (equal to 1 or 2, respectively for x, y coordinates), ν e is 

the nondimensional effective turbulent viscosity, fj are the 

components of electromagnetic force, and the last term in (5) 

represents the nondimensional gravity. The nondimensional 

governing parameters are the Reynolds number Re and the 

electromagnetic interaction parameter E: 
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The Boussinesq equations can be derived formally if representing 

the velocity as an expansion in the small amplitude parameter: 
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where u0 is the horizontal circulation and uε  is the wave related 

velocity. An important feature of the shallow water 

approximation is the depth averaging procedure defined for the 

variables in each layer identified with number “i“ . For example, 

the horizontal velocity component depth average is 
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and similar definitions are introduced for other depth dependent 

variables. The same depth averaging procedure formally can be 

applied to the fluid flow equations (3)-(5). The depth average of 

the continuity equation (3) for each of the two fluid layers (i=1 

and 2) with the variable depths ),,( tyxH i
is 
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which is accurate for all orders in ε , δ , and the kinematic 

boundary condition at the moving interface between the two 

liquids: 
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has been used to derive (8).  

 

The continuity equation (3) and the condition (9) show that the 

vertical velocity expansion starts with the εδ  term: 
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Then the leading accuracy O(1,ε ,
δ
) pressure expression can be 

derived from (5) as 
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When the depth averaging procedure (7) is applied to the 

horizontal momentum equations (4), the equations for the 

combined horizontal velocity (horizontal circulation u0, plus ε -

order 
εû wave motion) are 
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where the continuity of the pressure at the interface is satisfied by 

introducing the pressure 
0

( )p H  at the common interface. The 

effective turbulent viscosity ν e(x,y,t) can be computed according 

to the depth averaged versions of empirical turbulence models. 

For our simulations we used a version of k-ω  two equation model 

previously validated for other MHD flows [12]. The nonlinear 



friction at the top and bottom of the fluid layers in (11) is defined 

similarly to general shallow water models [7]: 
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The equations of momentum (11) and continuity (8) for the two 

fluid layers can be combined into a single nonlinear wave 

equation for the interface ζ (x,y,t) by taking the time derivative of 

(8), the horizontal divergence of (11). Then the difference 

between the resulting equations for the two layers permits to 

eliminate the common pressure at the interface )( 0Hp , yielding: 
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where F F F= −1 2  denotes difference of the respective variable 

in the two layers and, for simplicity of presentation, �  is assumed 

as constant. The equation (13) formally is a generalization of the 

stability models used previously, from which the linear model [8] 

can be recovered by excluding the nonlinear and the dispersion 

terms [1]. The horizontal circulation velocities, driven by the 

rotational part of the electromagnetic force, can be calculated by 

solving the equation (11) in the two layers. The numerically 

efficient solution  is to take the curl of the equation  (11), then to 

rewrite it for the two dimensional horizontal flow stream 

function. The solution of the resulting 4th order equation for the 

stream function is sought in combination with the 2-equation 

turbulence model for the effective viscosity [12]. 

 

Results for different physical effects on the waves  

 

In the following examples we will use the full electromagnetic 

model [11] suitable for realistic cell simulations. The proposed in 

[11] 500 kA cell configuration will be used in the course of this 

discussion. The magnetic field is computed from 6 cells in the 

potline (Fig. 1) and 4 cells in the return row (not shown). The 

magnetic field distribution is time dependent and recomputed at 

each time step of the flow and wave development. The typical 

distribution at the initial stage is shown in Figure 2 at the metal 

top level. The magnetic field variation is of an amplitude of about 

few Gauss and in this case is not affecting the cell stability (what 

is not always the case in general). 

 
Figure 2. Magnetic field distribution in the 500 kA cell: contour 

lines for the vertical component Bz and vectors for the horizontal 

Bx and By field at the top of liquid metal. 

 

The electric current distribution is computed in the fluid layers in 

conjunction with the external bus bar circuit [11], so that the 

waves affect the current redistribution in the anode bars, risers, 

etc. The cathodic current distribution is mostly affected by the 

bus bar sizing design, the ledge position and remains practically 

time independent according to our observations from the model 

results. The electric current distribution in the liquid metal 

obtained from the present model is shown in Figure 3.  

 

 
Figure 3. The electric current distribution in the liquid metal when 

the cathodic current is computed according to the busbar presence. 

 

A typical simulation of the wave development starts with the flat 

aluminium-electrolyte interface. After the current distribution is 

obtained, the magnetic field is computed (with the steel parts 

included, requiring several iterations to converge for the 

nonlinear magnetic properties of the steel parts), and the resulting 

interface deformation is computed for the assumed ‘stationary’ 

state. This position of the interface is used as the initial condition 

to compute the current, magnetic field, turbulent horizontal 

velocities and the interface development for the full time 

dependent simulation. In addition, the anode bottom is gradually 

‘burnt out’ in very small increments to accommodate to the time 

average interface position (replicating a real cell situation). This 

option can be disabled if required. 

 
Figure 4. Horizontal velocity and turbulent viscosity in the 

electrolyte layer for the 500 kA cell. 

 
Figure 5. Horizontal velocity and turbulent viscosity in the liquid 

aluminium layer for the 500 kA cell. 

 

The velocity field is turbulent and time dependent. The 

horizontal, depth averaged circulation reaches almost stationary 

distribution, which is different in each of fluid layers mostly 

because of the electric current distrubution variation. In the 

electrolyte layer the electric current from the individual anodes is 

passing predominantly vertically in this poorly conducting 



material. The resulting flow is a rather symmetric vortex structure 

in the electrolyte layer (Fig. 4). The horizontal electric current in 

the aluminium, because of the cathodic bars, ledge and the wave 

perturbed interface, is responsible for the flow variation (Fig. 5), 

which is affected also by the magnetic field from the non-

symmetric bus configuration compensating the return row. The 

horizontal circulation vortices create a pressure gradient 

contributing to the deformation of the free surface. Typically an 

intense vortex in a single fluid layer is associated with a surface 

dip in the vortex centre. For the two layers the effect on the 

common interface is in balance when two equal vortices are 

positioned one above the other because the last term in (13), 

responsible for the effect, is approaching zero as the densities of 

the two fluids are very close. Instructive comparisons can be 

made for the interface at the same time moments if accounting 

for the horizontal circulation and without the effect. Figure 6 

clearly shows the dip at the centre where the vortex in aluminium 

is more intense. An elevation of the interface at the right side 

arises from the more intense electrolyte circulation in this region, 

as can be seen from comparing the Figures 4 and 5. The interface 

shape computed with the same parameters, except disabling the 

last term in equation (13), and keeping the same friction 

coefficient (12) with the turbulence effect on |u|, is shown in 

Figure 7. When the horizontal circulation effect in (13) is set to 

zero, the interface appears to be less deformed and the 

corresponding comparison of the self-sustained oscillation pattern 

is shown in Figure 8. Remarkably, the wave frequency, computed 

after the 1000 s simulation of the waves (Figure 9), is shifted 

from the pure gravitational waves as expected from the theory in 

[8] (see also [2] for comparison with real cell observation). The 

shift of frequencies is different in the two cases, with and without 

the horizontal circulation effect, suggesting the effect on the cell 

stability of the additional inclusion of the horizontal vortices in 

 

 
Figure 6. Interface at fixed time 500s when the cathode current is 

computed for the full busbar network, with the horizontal 

velocities effect. 

 
Figure 7. Interface at fixed time 500s when the cathode current is 

computed for the full busbar network, but the horizontal velocities 

effect on the interface is disabled. 

the model. The effect of the vortices can be eliminated almost 

completely if making the vortices equal in both layers. A test run 

with the horizontal velocities made artificially equal in both 

layers confirms the interface shape similar to Figure 7. This 

observation can be an important tool for the more stable high 

amperage cell design where the horizontal magnetic field 

components, mostly responsible for the horizontal velocities, are 

usually not optimised.  

 
Figure 8. Comparison of the interface oscillations for the effect of 

the horizontal velocity circulation. 

 

 
Figure 9. Fourier spectra for the interface oscillations with and 

without the horizontal circulation. 

 

With the present test bus bar configuration for the 500 kA cell and 

for the anode to cathode distance ACD = 0.055 m the level of the 

‘MHD noise’ oscillations is very low (about 0.5 mm amplitude in 

a fixed position). The numerical model is very sensitive to the 

usual stability affecting parameters, like the depth of the liquid 

metal and the ACD. The cell becomes unstable if the metal depth 

is reduced from 0.30 m to 0.20 m, yet remains stable for 0.25 m 

even if the oscillation amplitude increases to 2 mm. Similarly, the 

decrease in ACD makes the cell unstable. The unstable interface 

computed for the ACD = 0.035 m is shown in Figure 10. The 

wave development pattern at a fixed interface location for 

different ACD is demonstrated in Figure 11. The unstable cell at 

ACD = 0.045 m demonstrates the frequency shift according to the 

mechanism described in reference [8]. 

 
Figure 10. Initial development of instability in the unstable cell 

when the ACD is reduced to 0.035 m: interface at fixed time 500s. 

 



 
Figure 11. Comparison of the interface oscillations for different 

ACD: the cell becomes stable for ACD = 0.055 m. 

 
 

Figure 12. Fourier spectra for the interface oscillations with 

different ACD. 

 

We mentioned previously the option in the full model of the 

gradual anode burnout at the bottom similar to the long term 

process in a real cell of the anode bottom accommodating to the 

more uniform average ACD. The previous results were obtained 

with this option enabled. What occurs if this option is disabled, as 

it is the case for simpler MHD models. The Figure 13 

demonstrates a considerably different interface shape for the case 

without the anode burnout, and the Figure 14 - for the oscillation 

pattern. It is well known from the practical observations that the 

anode bottom burnout is nonuniform and this effect is important 

for the cell operation and the new anode setup procedure.    

 
Figure 13. Interface at fixed time 500s when the anode burnout 

option is disabled (flat anode bottom). 

 

 
Figure 14. Comparison of the interface oscillations for the effect 

of the anode burnout. 

 
Figure 15. Comparison of the interface oscillations for the effect 

of the overvoltage variable part: the cell becomes stable for ACD 

= 0.045 m if part of the overvoltage is included. 

 

The general model described in this paper permits a number of 

other important comparisons for the effect of different physical 

parameters. It includes also the user defined option for the parts of 

the polarization voltage which can be local current density 

dependent and can contribute to the irreversible voltage drop. 

Figure 15 demonstrates that if this part is included, the cell 

stability is improved, e.g., the 500 kA cell becomes stable at the 

ACD = 0.045 m. It is, of course, unstable for lower ACD values. 

 

The next examples are illustrating what occurs if simpler models 

are used for the electric current calculation, as for instance in [3-6, 

8-10], where typically the cathode current at the metal bottom is 

assumed to be Jz = constant. Figure 16 shows the horizontal 

current distribution in this case, corresponding to the real anodes 

and the interface computed for this case (Figure 17). According to 

the simple models case we disabled anode burnout, the horizontal 

circulation and the additional overvoltage effects when computing 

these results. The corresponding computed interface oscillation is 

presented in the Figure 18 and the Fourier spectral analysis – in 

Figure 19. The oscillation spectra and pattern are quite different if 

the simpler models are used in comparison to the general model 

used in this paper and including various additional important 

physical factors. 

 
Figure 16. The electric current distribution in the liquid metal 

when the constant cathodic current condition is imposed. 

 
Figure 17. Interface at fixed time 500s when constant cathode 

current is given (Jc=const), and the horizontal velocities effect and 

the anode burnout are disabled. 

 



 

 
Figure 18. Comparison of the interface oscillations for the effect 

of the cathode current Jc distribution and the horizontal velocities 

effect and the anode burnout are disabled.  

 

 
 

Figure 19. Fourier spectra for the interface oscillations with 

normally computed cathode current Jc distribution and the 

theoretical Jc = const and the horizontal velocities effect and the 

anode burnout are disabled.  

 

In the case if only the cathode current has been modified and other 

options kept the same as in the general model, the computed 

interface shape is still quite different from the previous (Figure 

20) and the oscillation follows different pattern.  

 

 
Figure 3. Interface at fixed time 500s when constant cathode 

current is given (Jc=const), with the horizontal velocities effect 

and the anode burnout. 

 

 

Conclusions 

 

The general MHD model including the nonlinear wave – 

horizontal circulation interaction gives results sensitively 

replicating the real cell behavior. The inclusion of various 

additional physical factors in the model are of importance for 

predicting the cell response to operation practice and the particular 

design elements. The model is user friendly and permits easily to 

simulate MHD response to various cell parameters.  
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